grml-live(8)

Michael Prokop
Grml Solutions

	Revision History
	Revision 0.27.2	2016-02-15	MP
	Unify duplicated base.tgz documentation, add instructinos how to run grml-live directly from git,
 provide FAQ entry how to serve a local repository via HTTP.
	Revision 0.1	2010-09-01	MP
	Initial document version with included revision information.

1. Name

grml-live - build framework based on FAI for generating a Grml and Debian based
Linux Live system (CD/ISO)

2. Synopsis

grml-live [-a <architecture>] [-c <classe[s]>] [-C <configfile>] [
-e <extract_iso_name>] [-g <grml_name>] [-i <iso_name>] [
-o <output_directory>] [-r <release_name>] [-s <suite>] [
-t <template_directory>] [-v <version_number>] [-U <username>] [
-w <date>] [-AbBFnNqQuVz]

3. Description

grml-live provides the build system for creating a Grml and Debian based Linux
Live-CD. The build system is based on
FAI (Fully Automatic
Installation). grml-live uses the "fai dirinstall" feature to generate a chroot
system based on the class concept of FAI (see later sections for further
details) and provides the framework to be able to generate a full-featured ISO.
It does not use all the FAI features by default though and you don’t have to
know FAI to be able to use it.
The use of FAI gives you the flexibility to choose the packages you would like
to include on your very own Linux Live-CD without having to deal with all the
details of a build process.
	[image: [Caution]]	
	grml-live does not use /etc/fai for configuration but instead
(unless overridden using the '-D' option). This ensures that it does not clash
with default FAI configuration and packages, so you can use grml-live and FAI
completely independent at the same time!

	[image: [Note]]	
	Please notice that you should have a fast network connection as all the Debian
packages will be downloaded and installed via network. If you want to use a
local mirror (strongly recommended if you plan to use grml-live more than once)
checkout debmirror(1), reprepro(1) (see /usr/share/doc/grml-live/examples/reprepro/ for a
sample configuration), apt-cacher(1) and approx(8). To avoid downloading the
base system again and again check out the base tar.gz feature.

4. Options

	
-A

	
Clean up all output directories before running the build process. After finishing,
clean up the Chroot target and Build target directories.

	
-a ARCHITECTURE

	
Use the specified architecture instead of the currently running one. This
allows building a 32bit system on a 64bit host (though you can’t build a 64bit
system on a 32bit system/kernel of course). Please notice that real
crosscompiling (like building a ppc system on x86) isn’t possible due to the
nature and the need of working in a chroot. Currently supported values: i386
and amd64.

	
-b

	
Build the ISO without updating the chroot via FAI. This option is useful for
example when working on stable releases: if you have a working base
system/chroot and do not want to execute any further updates (via "-u" option)
but intend to only build the ISO.

	
-B

	
Build the ISO without touching the chroot at all. This option is useful if
you modified anything that FAI or grml-live might adjust via Grml’s FAI
scripts. It’s like the -b option but even more advanced. Use only if you
really know that you do not want to update the chroot.

	
-c CLASSES

	
Specify the CLASSES to be used for building the ISO via FAI. By default only
the classes GRMLBASE, GRML_FULL and I386/AMD64 (depending on system
architecture) are assumed. Additionally you can specify a class providing a
(grml-)kernel (see the CLASSES section in this document for
details about available classes). So instead of GRML_FULL you can also use e.g.
GRML_SMALL.

	[image: [Important]]	
	All class names should be written in uppercase letters. Do not use a dash, use
an underscore. So do not use "amd64" but "AMD64", do not use "FOO BAR" but
"FOO_BAR".

	
-C CONFIGURATION_FILE

	
The specified file is used as configuration file for grml-live. By default
/etc/grml/grml-live.conf is used as default configuration. If a file named
/etc/grml/grml-live.local exists it is used as well (sourced after reading
/etc/grml/grml-live.conf meant as main file for local configuration). As a last
option the specified configuration file is sourced so it is possible to override
settings of /etc/grml/grml-live.conf as well as of /etc/grml/grml-live.local.
Please notice that all configuration files have to be adjusted during execution
of grml-live, so please make sure you use /etc/grml/grml-live.conf as a base for
your own configuration file (usually /etc/grml/grml-live.local). Please also
notice that the configuration file specified via this option is not (yet)
/etc/grml/grml-live.local for configuration stuff used inside

	
-d DATE

	
Use specified date as build date information on the ISO instead of the default.
The default is the date when grml-live is being executed (retrieved via
executing date +%Y-%m-%d). The information is stored inside the file
/GRML/grml-version on the ISO, /etc/grml_version in the squashfs file and in all
the bootsplash related files. This option is useful if you want to provide an
ISO with release information for a specific date but have to build it in
advance. Usage example: -d 2009-10-30

	
-D CONFIGURATION_DIRECTORY

	
The specified directory is used as configuration directory for grml-live and its
FAI. By default /etc/grml/fai is used as default configuration directory. If
you want to have different configuration scripts, package definitions, etc. with
without messing with the global configuration under /etc/grml/fai provided by
grml-live this option provides you the option to use your own configuration
throughout this documentation.

	
-e EXTRACT_ISO_NAME

	
The squashfs inside the specified ISO will be extracted and used as the chroot.
This option is useful for remastering, in combination with -A and -b or -u.

	
-F

	
Force execution and do not prompt for acknowledgment of configuration.

	
-g GRML_NAME

	
Set the grml flavour name. Common usage examples: grml, grml-small, grml64.
Please do NOT use blanks and any special characters like /, ; inside
GRML_NAME, otherwise you might notice problems while booting.

	
-h

	
Display short usage information and exit.

	
-i ISO_NAME

	
Specify name of ISO which will be available inside $OUTPUT_DIRECTORY/grml_isos
by default.

	
-I CHROOT_INSTALL

	
Specify name of source directory which provides files that should become part of
the chroot/ISO. Not enabled by default. Note: the files are installed under /
in the chroot so you have to create the rootfs structure on your own.

	
-n

	
Skip creation of the ISO file. This option is useful if you want to build/update
the chroot and/or recreate the squashfs file without building an ISO file.

	
-N

	
Bootstrap the chroot without building bootloader, squashfs, or finalizing the
ISO. Use this option if installation of some packages fails, you want to run
custom commands or similar.
The main use of this option is to save time by skipping stages which aren’t
necessary for bootstrapping the chroot and which would get executed more than
once when iterating through the initial bootstrapping.
Alternatively, use this option as a test run of grml-live. Once you are
satisfied with the state of your grml_chroot, use grml-live -u to build the
remaining stages and finalize the ISO.

	
-o OUTPUT_DIRECTORY

	
Main output directory of the build process of FAI. Some directories are created
inside this target directory, being: grml_cd (where the files for creating the
ISO are located, including the compressed squashfs file), grml_chroot (the
chroot system) and grml_isos (where the resulting ISO is stored).

	
-q

	
Build the ISO without (re-)creating the squashfs compressed file using mksquashfs.
This option is useful if you just want to update parts outside the chroot in the ISO.
Consider combining this option with the build-only option -b.

	
-Q

	
Build the ISO without generating a netboot package.

	
-r RELEASENAME

	
Specify name of the release.

	
-s SUITE

	
Specify the Debian suite you want to use for your live-system. If unset defaults
to "testing". Supported values are: stable, testing, unstable (or their
corresponding release names like "stretch"). Please be aware that recent Debian
suites might require a recent base.tgz
debootstrap.

	
-t TEMPLATE_DIRECTORY

	
Specify place of the templates used for building the ISO. By default
(and if not manually specified) this is /usr/share/grml-live/templates/.

	
-u

	
Update existing chroot instead of rebuilding it from scratch. This option is
based on the softupdate feature of FAI.

	
-U USERNAME

	
Sets ownership of all build output files to specified username before exiting.

	
-v VERSION_NUMBER

	
Specify version number of the release.

	
-V

	
Increase verbosity in the build process.

	
-w DATE

	
The wayback machine. Build the system using Debian archives from the specified
date. Valid date formats are yyyymmddThhmmssZ or simply yyyymmdd. To learn
which snapshots exist, i.e. which date strings are valid, simply browse the
lists on http://snapshot.debian.org/. If there is no import at the exact time
you specified you will get the latest available timestamp which is before the
time you specified.
This option is useful especially for release and debugging builds - for example
if you know that the Debian archive was in a good state on a specific date but
you want to build it on another day in the future, where the archive might not
be as needed anymore. Please be aware that this is restricted to the plain
Debian repositories only, as referred to in /etc/apt/sources.list.d/debian.list
(so neither the Grml repositories nor any further custom ones are affected by
the wayback machine).

	
-z

	
Use ZLIB instead of LZMA/XZ compression in mksquashfs part of the build process.

5. Usage examples

To get a Debian-stable and Grml-based Live-CD using ./grml
as build and output directory just run:
grml-live
To get a 64bit Debian-testing and grml-small based Live-CD using /srv/grml-live
as build and output directory use the following command line on your amd64
system:
grml-live -s testing -c GRMLBASE,GRML_SMALL,AMD64 -o /srv/grml-live
	[image: [Note]]	
	If you have enough RAM, just run "mount -t tmpfs none /media/ramdisk" to get a
tmpfs ("RAMDISK"), and use /media/ramdisk as build and output directory - this
results in a very fast build process. Note that these files will be gone when
rebooting.

6. Main features of grml-live

	
create a Grml-/Debian-based Linux Live-CD with one single command

	
class based concept, providing a maximum of flexibility

	
supports integration of own hooks, scripts and configuration

	
supports use and integration of own Software and/or Kernels via simple use of
Debian repositories

	
native support of FAI features

7. The class concept

grml-live uses FAI and its class based concept for adjusting configuration and
setup according to your needs. This gives you flexibility and strength without
losing the simplicity in the build process.
The main and base class provided by grml-live is named GRMLBASE. It’s strongly
recommended to always use the class GRMLBASE when building an ISO using
grml-live, as well as the architecture dependent class which provides the kernel
(being I386 for x86_32 and AMD64 for x86_64) and a GRML_* class (like
GRML_SMALL or GRML_FULL). The following files and directories are
relevant for class GRMLBASE by default:
${GRML_FAI_CONFIG}/config/scripts/GRMLBASE/
${GRML_FAI_CONFIG}/config/debconf/GRMLBASE
${GRML_FAI_CONFIG}/config/class/GRMLBASE.var
${GRML_FAI_CONFIG}/config/hooks/instsoft.GRMLBASE
${GRML_FAI_CONFIG}/config/package_config/GRMLBASE
Take a look at the next section for information about the concept of those
files/directories.
If you want to use your own configuration, extend an existing configuration
and/or add additional packages to your ISO just invent a new class (or extend an
existing one). For example if you want to use your own class named "FOOBAR" just
set CLASSES="GRMLBASE,GRML_SMALL,AMD64,FOOBAR" inside /etc/grml/grml-live.local
or invoke grml-live using the classes option: "grml-live -c
GRMLBASE,GRML_SMALL,AMD64,FOOBAR …".
More details regarding the class concept can be found in the documentation of
FAI itself (being available at /usr/share/doc/fai-doc/).

8. Available classes

The package selection part of the classes can be found in
selected. The following classes are predefined:
	
DEBORPHAN: get rid of all packages listed in output of deborphan

	
FILE_RC: instead of using systemd as init system use file-rc instead. file-rc
was the init system used by Grml until and including stable release 2014.11,
starting with beginning of 2016 Grml switched to systemd instead. If you want to
build a live system in the old style using file-rc instead of systemd then enable
this class. Please notice that the Grml team no longer provides support for it
though.

	
FRESHCLAM: execute freshclam (if it’s present) to update clamav definitions
(increases resulting ISO size ~70MB). By default it’s skipped to avoid bigger
ISO size.

	
GRMLBASE: the main class responsible for getting a minimal subset of what’s
defining a Grml system. Important parts of the buildprocess are specified in
this class as well, so unless you have a really good reason you should always
use this class. Please be aware that using just the GRMLBASE class won’t be
enough, because the kernel packages (e.g. linux-image-*) are chosen in
further GRML_* classes (to provide maximum flexibility with kernel
selection). If you don’t want to use the existing GRML_FULL or GRML_SMALL
classes, define your own CLASS file choosing the kernel package you want to use
(and don’t forget to include your CLASS in the arguments of grml-live’s -c...
command line option).

	
GRML_FULL: full featured Grml, also known as the "normal", full grml as
introduced in December 2011 (~750 ISO size).

	
GRML_SMALL: minimum sized Grml version, known as grml-small (~360MB ISO
size).

	
LATEX: LaTeX(-related) packages like auctex, texlive,…
(which used to be shipped by grml before the LaTeX removal)

	
LATEX_CLEANUP: get rid of several very large LaTeX directories
(like some /usr/share/doc/texlive-*, /usr/share/doc/texmf,…)

	
LOCALES: use full featured locales setup (see /etc/locale.gen.grml). This
avoids to get rid of /usr/share/locale - which happens by default otherwise - as
well.

	
NO_ONLINE: do not run scripts during the chroot build process which require a
network connection

	
RELEASE: run some specific scripts and commands to provide the workflow for an
official grml release

	
REMOVE_DOCS: get rid of documentation directories (like /usr/share/doc,
/usr/share/man/, /usr/share/info,…)

	
SOURCES: retrieve Debian source packages after installation. Files will be
placed in the output directory under grml_sources.

	
XORG: providing important packages for use with a base grml-featured X.org
setup

9. Files

Notice that grml-live ships FAI configuration files that do not use the same
namespace as the FAI packages itself. This ensures that grml-live does not clash
with your usual FAI configuration, so instead of /etc/fai/fai.conf (package
below. To get an idea how another configuration or example files could look like
check out /usr/share/doc/fai-doc/examples/simple/ (provided by Debian package
fai-doc). Furthermore /usr/share/doc/fai-doc/fai-guide.html/ch-config.html
provides documentation regarding configuration possibilities.
/usr/sbin/grml-live
Script for the main build process. Requires root permissions for execution.
/etc/grml/grml-live.conf
Main configuration file for grml-live which should be considered as a reference
configuration file only. Please use /etc/grml/grml-live.local for local
configuration instead.
/etc/grml/grml-live.local
All the local configuration should go to this file. This file overrides any
defaults of grml-live. Configurations via /etc/grml/grml-live.local are preferred
over the ones from /etc/grml/grml-live.conf. If you want to override settings
from /etc/grml/grml-live.local as well you have to specify them on the grml-live
commandline.
${GRML_FAI_CONFIG}/fai.conf
Main configuration file for FAI which specifies where all the configuration
files and scripts for FAI/grml-live can be found. By default the configuration
variables are FAI_CONFIG_SRC=file:///etc/grml/fai/config and
GRML_FAI_CONFIG=/etc/grml/fai/config - both pointing to a directory shipped by
grml-live out-of-the-box so you shouldn’t have to configure anything in this
file.
${GRML_FAI_CONFIG}/config/
The main directory for configuration of FAI/grml-live. More details below.
${GRML_FAI_CONFIG}/config/class/
This directory contains files which specify main configuration variables for the
FAI classes.
${GRML_FAI_CONFIG}/config/debconf/
This directory provides the files for preseeding/configuration of debconf
through files.
${GRML_FAI_CONFIG}/config/hooks/
This directory provides files for customising the build process through hooks.
Hooks are user defined programs or scripts, which are called during the
installation process.
${GRML_FAI_CONFIG}/config/package_config/
Directory with lists of software packages to be installed or removed. The
different classes describe what should find its way to your ISO. When running
"grml-live -c GRMLBASE,GRML_SMALL,AMD64 …" only the configuration of GRMLBASE,
GRML_SMALL and AMD64 will be taken. If you use grml-live -c
GRMLBASE,GRML_SMALL,AMD64,FOOBAR … then the files of GRMLBASE, GRML_SMALL,
AMD64 plus the files from FOOBAR will be taken. So just create a new class to
adjust the package selection according to your needs. Please notice that the
directory GRMLBASE contains a package list defining a minimum but still
reasonable package configuration.
${GRML_FAI_CONFIG}/config/scripts/
Scripts for customising the ISO within the build process.
${GRML_FAI_CONFIG}/live-initramfs/
This directory provides the files used for building the initramfs/initrd via
live-initramfs(8).

10. Available log files

Starting with grml-live version 0.17.0 you should find log files in a directory
named grml_logs in the output directory (next to grml_isos, grml_chroot,…).
grml-live versions before 0.17.0 used to log into /var/log/grml-live.log
and /var/log/fai/grml.

11. Requirements for the build system

	
any Debian based system should be sufficient (if it doesn’t work it’s a bug,
please send us a bug report then). Check out How do I deploy grml-live on a plain Debian installation for details how to set up grml-live
on a plain, original Debian system.

	
enough free disk space; at least 2GB are required for a minimal grml-live
run (\1GB for the chroot [$CHROOT_OUTPUT], ~400MB for the build target
[$BUILD_OUTPUT], ~35MB for the netboot files and \~350MB for the resulting ISO
[$ISO_OUTPUT] plus some temporary files), if you plan to use GRML_FULL you
should have at least 4GB of total free disk space

	
fast network access for retrieving the Debian packages used for creating the
chroot (check out "local mirror" to workaround this problem as far as possible)

For further information see next section.

12. Current state of grml-live with squashfs-tools and kernel

Use squashfs-tools >=4.2-1 to build Grml (based) ISOs featuring kernel version
2.6.38-grml[64] or newer.

13. FAQ

13.1. How do I deploy grml-live on a plain Debian installation?

The easiest way to get a running grml-live setup is to just use Grml.
Of course using grml-live on a plain, original Debian installation is supported
as well. So there we go.
What we have: plain, original Debian stretch (9.x).
What we want: build a Grml ISO based on Debian/stretch for the amd64 architecture
using grml-live.
Instructions

adjust sources.list:
cat >> /etc/apt/sources.list << EOF
grml stable repository:
 deb http://deb.grml.org/ grml-stable main
deb-src http://deb.grml.org/ grml-stable main
grml testing/development repository:
 deb http://deb.grml.org/ grml-testing main
deb-src http://deb.grml.org/ grml-testing main
EOF
get keyring for apt:
apt-get update
apt-get --allow-unauthenticated install grml-debian-keyring
optionally(!) install basefile so we don't have to build basic
chroot from scratch, grab from http://daily.grml.org/
mkdir -p /etc/grml/fai/config/basefiles/
mv I386.tar.gz /etc/grml/fai/config/basefiles/
mv AMD64.tar.gz /etc/grml/fai/config/basefiles/
install relevant tools
apt-get --no-install-recommends install grml-live
adjust grml-live configuration for our needs:
cat > /etc/grml/grml-live.local << EOF
want a faster build process and don't need smaller ISOs?
if so use zlib compression
SQUASHFS_OPTIONS="-comp gzip -b 256k"
want to use a specific squashfs binary?
SQUASHFS_BINARY='/usr/bin/mksquashfs'
install local files into the chroot
CHROOT_INSTALL="/etc/grml/fai/chroot_install"
adjust if necessary (defaults to ./grml/):
OUTPUT="/srv/grml-live"
FAI_DEBOOTSTRAP="stretch http://ftp.debian.org/debian/"
ARCH="amd64"
CLASSES="GRMLBASE,GRML_FULL,AMD64"
EOF
just optional(!) - upgrade FAI to latest available version:
cat >> /etc/apt/sources.list.d/fai.list << EOF
deb http://jenkins.grml.org/debian fai main
deb-src http://jenkins.grml.org/debian fai main
EOF
get gpg key of FAI repos and install current FAI version:
wget -O - http://jenkins.grml.org/debian/C525F56752D4A654.asc | sudo apt-key add -
apt-get update
apt-get install fai-client fai-server fai-doc
That’s it. Now invoking grml-live -V should build the ISO. If everything
worked as expected the last line of the shell output should look like:
[*] Successfully finished execution of grml-live [running 687 seconds]
and the ISO can be found inside /grml-live/grml-live/grml_isos/ then.

13.2. What is $GRML_FAI_CONFIG?

The variable $GRML_FAI_CONFIG is pointing to the directory /etc/grml/fai by
default. To provide you a maximum of flexibility you can set up your own
configuration directory (e.g. based on /etc/grml/fai) and use this directory
running grml-live with the -D <config_dir> option. Now $GRML_FAI_CONFIG
points to the specified directory instead of using /etc/grml/fai and all the
configuration files, scripts and hooks will be taken from your
$GRML_FAI_CONFIG directory.

13.3. I’ve problems with the build process. How to start debugging?

Check out the logs inside the directory grml_logs next to your grml_chroot,
grml_isos,… directories.
If you need help with grml-live or would like to see new features as part of
grml-live you can get commercial support via
Grml Solutions.

13.4. How do I install further files into the chroot/ISO?

Just point the configuration variable CHROOT_INSTALL to the directory which
provides the files you would like to install. Note that the files are installed
under / in the chroot - so you have to create the rootfs structure on your
own. Usage example:
echo "CHROOT_INSTALL=\$GRML_FAI_CONFIG/chroot_install" >> /etc/grml/grml-live.local
mkdir -p /etc/grml/fai/chroot_install/usr/src/
wget example.org/foo.tar.gz
mv foo.tar.gz /etc/grml/fai/chroot_install/usr/src/
grml-live ...

13.5. Can I use my own (local) Debian mirror?

Yes. Set up an according sources.list configuration as class file in
FAI_DEBOOTSTRAP (if not already using a base.tgz) inside
/etc/grml/grml-live.conf[.local]. If you’re setting up your own class file don’t
forget to include the class name in the class list (grml-live -c …).
If you want to use a local (for example NFS mount) mirror additionally then
adjust MIRROR_DIRECTORY in /etc/grml/grml-live.conf[.local] as well.
If you want to use a HTTP Proxy (like apt-cacher-ng), set APT_PROXY. Example:
APT_PROXY="http://localhost:3142/"

13.6. How do I add additional Debian package(s) to my CD/ISO?

Just create a new class (using the package_config directory):
cat > /etc/grml/fai/config/package_config/MIKA << EOF
PACKAGES install
vim
another_name_of_a_debian_package
and_another_one
EOF
and specify it when invoking grml-live then:
grml-live -c GRMLBASE,GRML_SMALL,AMD64,MIKA

13.7. I fscked up my grml-live configuration. How do I reset it to the defaults?

Notice: this deletes all your grml-live configuration files. If that’s really
what you are searching for just run:
rm -rf /etc/grml/fai /etc/grml/grml-live.conf
dpkg -i --force-confnew --force-confmiss /path/to/grml-live_..._all.deb

13.8. Set up apt-cacher-ng for use with grml-live

Make sure /etc/grml/grml-live.local provides according APT_PROXY and
FAI_DEBOOTSTRAP:
cat /etc/grml/grml-live.local
[...]
APT_PROXY="http://localhost:3142/"
[...]
FAI_DEBOOTSTRAP="stretch http://localhost:3142/ftp.debian.org/debian stretch main contrib non-free"
Make sure apt-cacher-ng is running (/etc/init.d/apt-cacher-ng restart).
That’s it. All downloaded files will be cached in /var/cache/apt-cacher-ng then.

13.9. How do I revert the manifold feature from an ISO?

The so-called manifold feature Grml ISOs can, but by default do not, use allows
one to use the same ISO for CD boot and USB boot. If you notice any problems
when booting manifold-crafted media, just revert the manifold feature running:
% dd if=/dev/zero of=grml.iso bs=512 count=1 conv=notrunc
To switch from manifold to isohybrid mode (an alternative approach provided by
syslinux, used by default for official Grml images) then just execute:
% isohybrid grml.iso

13.10. How do I create a base tar.gz (I386.tar.gz or AMD64.tar.gz)

First of all create the chroot using debootstrap (requires root):
BASECHROOT='/tmp/basefile' # path where the chroot gets generated
SUITE='stretch' # using the current stable release should always work
debootstrap --exclude=info,tasksel,tasksel-data "$SUITE" "$BASECHROOT" http://ftp.debian.org/debian
tar -C "$BASECHROOT" --exclude='var/cache/apt/archives/*.deb' -zcf "${SUITE}".tar.gz ./
	[image: [Tip]]	
	By default debootstrap builds a chroot matching the architecture of the running
host system. If you’re using an amd64 system and want to build an i386 base.tgz
then invoke debootstrap using the --arch i386 option. Disclaimer: building an
AMD64 base.tgz won’t work if you are using a 32bit kernel system of course.

Finally place the generated tarball in /etc/grml/fai/config/basefiles/ (note
that it needs to be uppercase letters matching the class names, so: e.g.
AMD64.tar.gz for amd64 and I386.tar.gz for i386).
Then executing grml-live should use this file as base system instead of executing
debootstrap. Check out the output for something like:
[...]
ftar: extracting //etc/grml/fai/config/basefiles///AMD64.tar.gz to /srv/grml64_testing/grml_chroot//
[...]

13.11. How to use your own local repository

Let’s assume you have Debian package(s) in your filesystem inside
/home/foobar/local-packages and want to provide them to your grml-live build.
This can be achieved either 1) through a bind mount (using the MIRROR_DIRECTORY
configuration) or 2) by serving a repository via HTTP.
Serving via bind mount / MIRROR_DIRECTORY

Make sure to create an according sources.list configuration file, e.g. using
your own class name CUSTOM:
cat > /etc/grml/fai/config/files/etc/apt/sources.list.d/local-packages.list/CUSTOM << EOF
deb file:///home/foobar/local-packages ./
EOF
Add the according MIRROR_DIRECTORY configuration to your grml-live configuration:
echo "MIRROR_DIRECTORY='/home/foobar/packages'" >> /etc/grml/grml-live.local
Make sure the local directory looks like a mirror:
% cd /home/foobar/packages
% dpkg-scanpackages . /dev/null | gzip > Packages.gz
Finally invoke grml-live with your class name (CUSTOM in this example) added
to the list of classes on the command line (see grml-live option -c).

Serving a repository via HTTP

Make sure to create an according sources.list configuration file, e.g. using
your own class name CUSTOM:
cat > /etc/grml/fai/config/files/etc/apt/sources.list.d/local-packages.list/CUSTOM << EOF
deb http://127.0.0.1:8000/ ./
EOF
Make sure the local directory is served via HTTP on the according IP address and
port. For the http://127.0.0.1:8000/ example from above it should be enough to
just invoke:
% cd /home/foobar/packages
% dpkg-scanpackages . /dev/null | gzip > Packages.gz
% python -m SimpleHTTPServer 8000
	[image: [Tip]]	
	Of course you can also use a real Debian repository setup using tools like
reprepro(1) and/or using a real web server, though for quick debugging sessions
python’s SimpleHTTPServer in combination with dpkg-scanpackages from package
dpkg-dev is a simple and easy approach.

Finally invoke grml-live with your class name (CUSTOM in this example) added
to the list of classes on the command line (see grml-live option -c).

14. Download / install grml-live as a Debian package

Stable Debian packages are available through the grml-repository at
deb.grml.org and the latest
Git commits are available as Debian packages from
jenkins.grml.org.
If you want to build a Debian package on your own (using for example a specific
version or the current development tree), just execute:
git clone git://git.grml.org/grml-live
cd grml-live
debuild -us -uc

15. Run grml-live directly from git

In case you want to run grml-live directly from the git repository checkout
(after making sure all dependencies are installed), you should set
GRML_FAI_CONFIG so that a) it finds the according FAI configuration files and
b) does not use the config files of an possibly installed grml-live package.
Usage example:
export GRML_FAI_CONFIG=$(pwd)/etc/grml/fai
export SCRIPTS_DIRECTORY=$(pwd)/scripts
export TEMPLATE_DIRECTORY=$(pwd)/templates
./grml-live -s sid -a amd64 -c GRMLBASE,GRML_FULL,AMD64

16. Source

The source of grml-live is available at
https://github.com/grml/grml-live/

17. Bugs

Please report feedback, bugreports and wishes
to the Grml team!

18. Documentation

The most recent grml-live documentation is available online at
http://grml.org/grml-live/ and for offline reading also available
in different formats:
	
http://grml.org/grml-live/grml-live.epub

	
http://grml.org/grml-live/grml-live.pdf

19. Authors

Michael Prokop <mika@grml.org>

